Дистанционные уроки

Дольников Владимир Леонидович,
автор и ведущий дистанционных занятий

– доктор физико-математических наук, профессор ЯрГУ им.П.Г.Демидова, член жюри и методкомиссии Всероссийской олимпиады школьников по математике, наставник победителей Всероссийских и международных олимпиад школьников.

Основные математические принципы в решении олимпиадных задач: избранные олимпиадные задачи по математике

  • Математическая индукция (часть 1)

    Дистанционный урок знакомит слушателей с принципом математической индукции, возможностями его использования при решении математических задач. Подробно разбирается порядок доказательства утверждений с помощью метода математической индукции. Порядок практического применения метода иллюстрируется как на примере задач на доказательство, так и при построении конструкций.
  • Математическая индукция (часть 2)

    В ходе дистанционного урока продолжается знакомство с возможностями использования метода математической индукции при решении задач. Особое внимание уделяется разбору задач комбинаторной геометрии, в том числе в качестве примера приводятся два индукционных доказательства теоремы Хелли, основанные на разных подходах. Урок ориентирован на школьников, изучающих возможности применения различных математических методов при решении олимпиадных задач.
  • Принцип Дирихле (часть 1)

    Учащимся предлагается ознакомиться с возможностями применения при решении олимпиадных задач одного из наиболее простых, но вместе с тем эффективным математическим методом решения задач, основанном на использовании принципа Дирихле. На доступных примерах из комбинаторики и комбинаторной геометрии вы сможете увидеть, как на первый взгляд сложные олимпиадные задачи получают простое и изящное решение.
  • Принцип Дирихле (часть 2)

    Урок будет полезен тем, кто уже ознакомился с основными идеями и подходами к использованию принципа Дирихле при решении математических задач. Особое внимание уделяется решению задач из области комбинаторной геометрии. В рамках данного урока предлагается применить различные варианты принципа Дирихле в решении задач о покрытии (точек прямыми или наоборот, покрытии окружностями, треугольниками).
  • Принцип крайнего

    На основе серии разнообразных ярких примеров предлагается изучить принцип решения математических задач, базирующийся на рассмотрении разного рода крайних объектов - наибольших и наименьших чисел, расстояний, углов. Принцип крайнего иллюстрируется решениями задач комбинаторной геометрии. В ходе дистанционного урока рассматриваются ставшие уже классичесими сложные олимпиадные задачи, с успехом решаемые с использованием принципа крайнего.
  • Четность

    В ходе дистанционного урока показывается, как достаточно простая идея - проверка количества объектов на четность - оказывается крайне эффективной даже при решении сложных олимпиадных задач, а также задач комбинаторики и комбинаторной геометрии. С использованием принципа четности доказывается существование или отсутствие различных комбинаторных конструкций. Особое внимание уделяется обобщению различных математических задач и изучению возможности применения принципа четности для их решения.

Новости

26.05.2025 Подведены итоги семейной математической онлайн-олимпиады "От А до Я" - 2025

Изображение для новости

Участие в мероприятии, проводившемся  в мае 2025 года в течение 3 недель, приняли   взрослые и дети в составе   51 семейной команды из 7 регионов РФ.  Вместе с семьями из городов и районов Ярославской области решали интересные и нестандратные задачи участники из г. Костромы,  г.Долгопрудного (Московская область), г.Глазова (Удмуртская Республика), г.Губахи (Пермский край), села Таволожка (Саратовская область), поселка Сетово (Тюменская область).

В состав семейных команд включились мамы, папы, бабушки, дедушки, и, конечно, школьники в возрасте от 11 до 14 лет. В финале в режиме видеоконференции участники  смогли обсудить интересные математические задачи и узнать способы решения у педагогов-математиков, членов жюри Всероссийской олимпиады школьников по математике.

 

20.05.2025 20 мая прошел 2 тур семейной математической онлайн-олимпиады 2025 года

Изображение для новости

Участниками тура стали 18 семейных команд из  Гаврилов-Ямского,  Тутаевского и Ярославского районов Ярославской области, г.Рыбинска, г.Ярославля, города Глазов (Удмуртская Республика),  г.Губахи (Пермский край),  г.Костромы.
Рейтинг участников опубликован на странице Итоги 2 тура.